o
    g 6                     @  s   d dl mZ d dlZd dlmZ d dlmZ d dlmZ ddlmZ ddlm	Z	 dd	lm
Z
 d
dlmZ d
dlmZ d
dlmZ d
dlmZ d
dlmZ ededZejfddZejfddZG dd deje ZG dd dejZdd ZdS )    )annotationsN)Any)Optional)TypeVar   )CONTAINED_BY)CONTAINS)OVERLAP   )types)util)
expression)	operators)_TypeEngineArgument_T)boundc                 C     | | |S )zjA synonym for the ARRAY-level :meth:`.ARRAY.Comparator.any` method.
    See that method for details.

    )anyotherarrexproperator r   f/var/www/html/ecg_monitoring/venv/lib/python3.10/site-packages/sqlalchemy/dialects/postgresql/array.pyr         r   c                 C  r   )zjA synonym for the ARRAY-level :meth:`.ARRAY.Comparator.all` method.
    See that method for details.

    )allr   r   r   r   All'   r   r   c                      sL   e Zd ZdZd ZdZdZ fddZedd Z	dd
dZ
dddZ  ZS )arraya0  A PostgreSQL ARRAY literal.

    This is used to produce ARRAY literals in SQL expressions, e.g.::

        from sqlalchemy.dialects.postgresql import array
        from sqlalchemy.dialects import postgresql
        from sqlalchemy import select, func

        stmt = select(array([1, 2]) + array([3, 4, 5]))

        print(stmt.compile(dialect=postgresql.dialect()))

    Produces the SQL:

    .. sourcecode:: sql

        SELECT ARRAY[%(param_1)s, %(param_2)s] ||
            ARRAY[%(param_3)s, %(param_4)s, %(param_5)s]) AS anon_1

    An instance of :class:`.array` will always have the datatype
    :class:`_types.ARRAY`.  The "inner" type of the array is inferred from
    the values present, unless the ``type_`` keyword argument is passed::

        array(["foo", "bar"], type_=CHAR)

    Multidimensional arrays are produced by nesting :class:`.array` constructs.
    The dimensionality of the final :class:`_types.ARRAY`
    type is calculated by
    recursively adding the dimensions of the inner :class:`_types.ARRAY`
    type::

        stmt = select(
            array(
                [array([1, 2]), array([3, 4]), array([column("q"), column("x")])]
            )
        )
        print(stmt.compile(dialect=postgresql.dialect()))

    Produces:

    .. sourcecode:: sql

        SELECT ARRAY[
            ARRAY[%(param_1)s, %(param_2)s],
            ARRAY[%(param_3)s, %(param_4)s],
            ARRAY[q, x]
        ] AS anon_1

    .. versionadded:: 1.3.6 added support for multidimensional array literals

    .. seealso::

        :class:`_postgresql.ARRAY`

    
postgresqlTc                   s   | dd }t jtjg|R i | dd | jD | _|d ur#|n
| jr+| jd ntj}t	|t
rGt
|j|jd ur@|jd ndd| _d S t
|| _d S )Ntype_c                 S  s   g | ]}|j qS r   )type).0argr   r   r   
<listcomp>r   s    z"array.__init__.<locals>.<listcomp>r   r      )
dimensions)popsuper__init__r   comma_opclauses_type_tuplesqltypesNULLTYPE
isinstanceARRAY	item_typer%   r    )selfr*   kwtype_arg	main_type	__class__r   r   r(   n   s   


	zarray.__init__c                 C  s   | fS Nr   r1   r   r   r   _select_iterable      zarray._select_iterableFNc                   s@   |s t ju rtjd | jddS t fdd|D S )NT)_compared_to_operatorr   _compared_to_typeuniquec                   s   g | ]}j  |d dqS )T)_assume_scalarr   )_bind_param)r!   or   r1   r   r   r   r#      s    z%array._bind_param.<locals>.<listcomp>)r   getitemr   BindParameterr    r   )r1   r   objr>   r   r   rA   r   r?      s   
zarray._bind_paramc                 C  s"   |t jt jt jfv rt| S | S r7   )r   any_opall_oprB   r   Grouping)r1   againstr   r   r   
self_group   s   
zarray.self_group)FNr7   )__name__
__module____qualname____doc____visit_name__stringify_dialectinherit_cacher(   propertyr9   r?   rI   __classcell__r   r   r5   r   r   0   s    8

r   c                   @  s   e Zd ZdZ			ddddZG dd dejjZeZe	dd Z
e	dd Zdd Zejdd Zdd Zdd Zdd ZdS )r/   an
  PostgreSQL ARRAY type.

    The :class:`_postgresql.ARRAY` type is constructed in the same way
    as the core :class:`_types.ARRAY` type; a member type is required, and a
    number of dimensions is recommended if the type is to be used for more
    than one dimension::

        from sqlalchemy.dialects import postgresql

        mytable = Table(
            "mytable",
            metadata,
            Column("data", postgresql.ARRAY(Integer, dimensions=2)),
        )

    The :class:`_postgresql.ARRAY` type provides all operations defined on the
    core :class:`_types.ARRAY` type, including support for "dimensions",
    indexed access, and simple matching such as
    :meth:`.types.ARRAY.Comparator.any` and
    :meth:`.types.ARRAY.Comparator.all`.  :class:`_postgresql.ARRAY`
    class also
    provides PostgreSQL-specific methods for containment operations, including
    :meth:`.postgresql.ARRAY.Comparator.contains`
    :meth:`.postgresql.ARRAY.Comparator.contained_by`, and
    :meth:`.postgresql.ARRAY.Comparator.overlap`, e.g.::

        mytable.c.data.contains([1, 2])

    Indexed access is one-based by default, to match that of PostgreSQL;
    for zero-based indexed access, set
    :paramref:`_postgresql.ARRAY.zero_indexes`.

    Additionally, the :class:`_postgresql.ARRAY`
    type does not work directly in
    conjunction with the :class:`.ENUM` type.  For a workaround, see the
    special type at :ref:`postgresql_array_of_enum`.

    .. container:: topic

        **Detecting Changes in ARRAY columns when using the ORM**

        The :class:`_postgresql.ARRAY` type, when used with the SQLAlchemy ORM,
        does not detect in-place mutations to the array. In order to detect
        these, the :mod:`sqlalchemy.ext.mutable` extension must be used, using
        the :class:`.MutableList` class::

            from sqlalchemy.dialects.postgresql import ARRAY
            from sqlalchemy.ext.mutable import MutableList


            class SomeOrmClass(Base):
                # ...

                data = Column(MutableList.as_mutable(ARRAY(Integer)))

        This extension will allow "in-place" changes such to the array
        such as ``.append()`` to produce events which will be detected by the
        unit of work.  Note that changes to elements **inside** the array,
        including subarrays that are mutated in place, are **not** detected.

        Alternatively, assigning a new array value to an ORM element that
        replaces the old one will always trigger a change event.

    .. seealso::

        :class:`_types.ARRAY` - base array type

        :class:`_postgresql.array` - produces a literal array value.

    FNr0   _TypeEngineArgument[Any]as_tupleboolr%   Optional[int]zero_indexesc                 C  s>   t |tr	tdt |tr| }|| _|| _|| _|| _dS )a-  Construct an ARRAY.

        E.g.::

          Column("myarray", ARRAY(Integer))

        Arguments are:

        :param item_type: The data type of items of this array. Note that
          dimensionality is irrelevant here, so multi-dimensional arrays like
          ``INTEGER[][]``, are constructed as ``ARRAY(Integer)``, not as
          ``ARRAY(ARRAY(Integer))`` or such.

        :param as_tuple=False: Specify whether return results
          should be converted to tuples from lists. DBAPIs such
          as psycopg2 return lists by default. When tuples are
          returned, the results are hashable.

        :param dimensions: if non-None, the ARRAY will assume a fixed
         number of dimensions.  This will cause the DDL emitted for this
         ARRAY to include the exact number of bracket clauses ``[]``,
         and will also optimize the performance of the type overall.
         Note that PG arrays are always implicitly "non-dimensioned",
         meaning they can store any number of dimensions no matter how
         they were declared.

        :param zero_indexes=False: when True, index values will be converted
         between Python zero-based and PostgreSQL one-based indexes, e.g.
         a value of one will be added to all index values before passing
         to the database.

        zUDo not nest ARRAY types; ARRAY(basetype) handles multi-dimensional arrays of basetypeN)r.   r/   
ValueErrorr    r0   rT   r%   rW   )r1   r0   rT   r%   rW   r   r   r   r(      s   
'

zARRAY.__init__c                   @  s(   e Zd ZdZdd Zdd Zdd ZdS )	zARRAY.Comparatora*  Define comparison operations for :class:`_types.ARRAY`.

        Note that these operations are in addition to those provided
        by the base :class:`.types.ARRAY.Comparator` class, including
        :meth:`.types.ARRAY.Comparator.any` and
        :meth:`.types.ARRAY.Comparator.all`.

        c                 K     | j t|tjdS )zBoolean expression.  Test if elements are a superset of the
            elements of the argument array expression.

            kwargs may be ignored by this operator but are required for API
            conformance.
            result_type)operater   r,   Boolean)r1   r   kwargsr   r   r   contains+  s   zARRAY.Comparator.containsc                 C  rY   )zBoolean expression.  Test if elements are a proper subset of the
            elements of the argument array expression.
            rZ   )r\   r   r,   r]   r1   r   r   r   r   contained_by4  s   zARRAY.Comparator.contained_byc                 C  rY   )zuBoolean expression.  Test if array has elements in common with
            an argument array expression.
            rZ   )r\   r	   r,   r]   r`   r   r   r   overlap<  s   zARRAY.Comparator.overlapN)rJ   rK   rL   rM   r_   ra   rb   r   r   r   r   
Comparator!  s
    		rc   c                 C  s   | j S r7   )rT   r8   r   r   r   hashableD  r:   zARRAY.hashablec                 C  s   t S r7   )listr8   r   r   r   python_typeH  s   zARRAY.python_typec                 C  s   ||kS r7   r   )r1   xyr   r   r   compare_valuesL  s   zARRAY.compare_valuesc                 C  s   t | jtjo
| jjS r7   )r.   r0   r,   Enumnative_enumr8   r   r   r   _against_native_enumO  s   zARRAY._against_native_enumc                   s:   j ||  d u rd S dd  fdd}|S )Nc                 S  s   dd |  dS )NzARRAY[z, ])join)elementsr   r   r   to_str]  s   z'ARRAY.literal_processor.<locals>.to_strc                   s    |  j}|S r7   )_apply_item_processorr%   valueinner	item_procr1   rp   r   r   process`  s   
z(ARRAY.literal_processor.<locals>.process)r0   dialect_implliteral_processorr1   dialectrw   r   ru   r   ry   V  s   zARRAY.literal_processorc                   s$   j ||  fdd}|S )Nc                   s   | d u r| S  |  jtS r7   )rq   r%   re   rs   rv   r1   r   r   rw   m  s
   
z%ARRAY.bind_processor.<locals>.process)r0   rx   bind_processorrz   r   r}   r   r~   h  s
   zARRAY.bind_processorc                   sT   j |||fdd}jr(|tdfdd  fdd}|S )Nc                   s*   | d u r| S  |  jjrtS tS r7   )rq   r%   rT   tuplere   r|   r}   r   r   rw   |  s   z'ARRAY.result_processor.<locals>.processz^{(.*)}$c                   s     | d}t|S )Nr   )matchgroup_split_enum_valuesrr   )patternr   r   handle_raw_string  s   z1ARRAY.result_processor.<locals>.handle_raw_stringc                   s(   | d u r| S t | tr | S | S r7   )r.   strr|   )r   super_rpr   r   rw     s   )r0   rx   result_processorrl   recompile)r1   r{   coltyperw   r   )r   rv   r   r1   r   r   r   w  s   
zARRAY.result_processor)FNF)r0   rS   rT   rU   r%   rV   rW   rU   )rJ   rK   rL   rM   r(   r,   r/   rc   comparator_factoryrQ   rd   rf   ri   r   memoized_propertyrl   ry   r~   r   r   r   r   r   r/      s$    J3!


r/   c                 C  s   d| vr| r|  dS g S | dd}|dd}g }t d|}d}|D ]}|dkr/| }q%|r;||dd q%|td	| q%|S )
N",z\"z_$ESC_QUOTE$_z\\\z(")Fz([^\s,]+),?)splitreplacer   appendextendfindall)array_stringtextresult	on_quotes	in_quotestokr   r   r   r     s   r   )
__future__r   r   typingr   r   r   r   r   r   r	    r   r,   r   sqlr   sql._typingr   r   eqr   ExpressionClauseListr   r/   r   r   r   r   r   <module>   s(   			v y