o
    "g                     @   sX   d Z ddlmZ dgZdd Zdd Zdd	 Zd
d Zdd Z	dd Z
G dd dZdS )zG
Mixin classes for custom array types that don't inherit from ndarray.
    )umathNDArrayOperatorsMixinc                 C   s"   z| j du W S  ty   Y dS w )z)True when __array_ufunc__ is set to None.NF)__array_ufunc__AttributeError)obj r   R/var/www/html/ecg_monitoring/venv/lib/python3.10/site-packages/numpy/lib/mixins.py_disables_array_ufunc
   s
   r	   c                        fdd}d ||_|S )z>Implement a forward binary method with a ufunc, e.g., __add__.c                    s   t |rtS  | |S Nr	   NotImplementedselfotherufuncr   r   func      
z_binary_method.<locals>.func__{}__format__name__r   namer   r   r   r   _binary_method      r   c                    r
   )zAImplement a reflected binary method with a ufunc, e.g., __radd__.c                    s   t |rtS  || S r   r   r   r   r   r   r      r   z&_reflected_binary_method.<locals>.funcz__r{}__r   r   r   r   r   _reflected_binary_method   r   r   c                    r
   )zAImplement an in-place binary method with a ufunc, e.g., __iadd__.c                    s    | || fdS )N)outr   r   r   r   r   r   (   s   z$_inplace_binary_method.<locals>.funcz__i{}__r   r   r   r   r   _inplace_binary_method&      r   c                 C   s   t | |t| |t| |fS )zEImplement forward, reflected and inplace binary methods with a ufunc.)r   r   r   )r   r   r   r   r   _numeric_methods.   s   r!   c                    r
   )z.Implement a unary special method with a ufunc.c                    s    | S r   r   )r   r   r   r   r   7   s   z_unary_method.<locals>.funcr   r   r   r   r   r   _unary_method5   r    r"   c                   @   s  e Zd ZdZdZeejdZeej	dZ
eejdZeejdZeejdZeejdZeejd	\ZZZeejd
\ZZZeejd\ZZZeej d\Z!Z"Z#eej$d\Z%Z&Z'eej(d\Z)Z*Z+eej,d\Z-Z.Z/eej0dZ1e2ej0dZ3eej4d\Z5Z6Z7eej8d\Z9Z:Z;eej<d\Z=Z>Z?eej@d\ZAZBZCeejDd\ZEZFZGeejHd\ZIZJZKeLejMdZNeLejOdZPeLejQdZReLejSdZTdS )r   a   Mixin defining all operator special methods using __array_ufunc__.

    This class implements the special methods for almost all of Python's
    builtin operators defined in the `operator` module, including comparisons
    (``==``, ``>``, etc.) and arithmetic (``+``, ``*``, ``-``, etc.), by
    deferring to the ``__array_ufunc__`` method, which subclasses must
    implement.

    It is useful for writing classes that do not inherit from `numpy.ndarray`,
    but that should support arithmetic and numpy universal functions like
    arrays as described in `A Mechanism for Overriding Ufuncs
    <https://numpy.org/neps/nep-0013-ufunc-overrides.html>`_.

    As an trivial example, consider this implementation of an ``ArrayLike``
    class that simply wraps a NumPy array and ensures that the result of any
    arithmetic operation is also an ``ArrayLike`` object:

        >>> import numbers
        >>> class ArrayLike(np.lib.mixins.NDArrayOperatorsMixin):
        ...     def __init__(self, value):
        ...         self.value = np.asarray(value)
        ...
        ...     # One might also consider adding the built-in list type to this
        ...     # list, to support operations like np.add(array_like, list)
        ...     _HANDLED_TYPES = (np.ndarray, numbers.Number)
        ...
        ...     def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
        ...         out = kwargs.get('out', ())
        ...         for x in inputs + out:
        ...             # Only support operations with instances of
        ...             # _HANDLED_TYPES. Use ArrayLike instead of type(self)
        ...             # for isinstance to allow subclasses that don't
        ...             # override __array_ufunc__ to handle ArrayLike objects.
        ...             if not isinstance(
        ...                 x, self._HANDLED_TYPES + (ArrayLike,)
        ...             ):
        ...                 return NotImplemented
        ...
        ...         # Defer to the implementation of the ufunc
        ...         # on unwrapped values.
        ...         inputs = tuple(x.value if isinstance(x, ArrayLike) else x
        ...                     for x in inputs)
        ...         if out:
        ...             kwargs['out'] = tuple(
        ...                 x.value if isinstance(x, ArrayLike) else x
        ...                 for x in out)
        ...         result = getattr(ufunc, method)(*inputs, **kwargs)
        ...
        ...         if type(result) is tuple:
        ...             # multiple return values
        ...             return tuple(type(self)(x) for x in result)
        ...         elif method == 'at':
        ...             # no return value
        ...             return None
        ...         else:
        ...             # one return value
        ...             return type(self)(result)
        ...
        ...     def __repr__(self):
        ...         return '%s(%r)' % (type(self).__name__, self.value)

    In interactions between ``ArrayLike`` objects and numbers or numpy arrays,
    the result is always another ``ArrayLike``:

        >>> x = ArrayLike([1, 2, 3])
        >>> x - 1
        ArrayLike(array([0, 1, 2]))
        >>> 1 - x
        ArrayLike(array([ 0, -1, -2]))
        >>> np.arange(3) - x
        ArrayLike(array([-1, -1, -1]))
        >>> x - np.arange(3)
        ArrayLike(array([1, 1, 1]))

    Note that unlike ``numpy.ndarray``, ``ArrayLike`` does not allow operations
    with arbitrary, unrecognized types. This ensures that interactions with
    ArrayLike preserve a well-defined casting hierarchy.

    r   ltleeqnegtgeaddsubmulmatmultruedivfloordivmoddivmodpowlshiftrshiftandxorornegposabsinvertN)Ur   
__module____qualname____doc__	__slots__r   umless__lt__
less_equal__le__equal__eq__	not_equal__ne__greater__gt__greater_equal__ge__r!   r)   __add____radd____iadd__subtract__sub____rsub____isub__multiply__mul____rmul____imul__r,   
__matmul____rmatmul____imatmul__true_divide__truediv____rtruediv____itruediv__floor_divide__floordiv____rfloordiv____ifloordiv__	remainder__mod____rmod____imod__r0   
__divmod__r   __rdivmod__power__pow____rpow____ipow__
left_shift
__lshift____rlshift____ilshift__right_shift
__rshift____rrshift____irshift__bitwise_and__and____rand____iand__bitwise_xor__xor____rxor____ixor__
bitwise_or__or____ror____ior__r"   negative__neg__positive__pos__absolute__abs__r:   
__invert__r   r   r   r   r   =   sL    O




N)r=   numpy._corer   r?   __all__r	   r   r   r   r!   r"   r   r   r   r   r   <module>   s    

